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Abstract

A procedure is presented for the analysis of stresses and deformations in a laminated circular cylinder of perfectly
bonded materials with the most general form of cylindrical anisotropy. Attention is focused in this paper on axi-
symmetric loads, and a companion paper will be devoted to loads producing flexural deformations. Axisymmetric
loading conditions include an axial force and torque on the ends as well as a general distribution of surface tractions of
pressure, circumferential shear and longitudinal shear. These surface tractions are represented by a power series in the
axial coordinate. Only the leading two terms are considered herein; they relate to uniform and linear variations of the
normal pressures and uniform circumferential and longitudinal surface shears. From the methodology for these two
terms, extension of the analysis procedure for higher terms will be readily apparent. The solutions herein fit descriptions
of (1) the relaxed formulation of Saint-Venant’s problem where prescribed tractions on the ends on a point-wise basis
are replaced by integral conditions relating to an axial force and torque and (2) the Almansi-Michell problem. Dif-
ferences in the stress distributions between these integral conditions with any point-wise specification are self-equili-
brated states that evanesce with distance from the ends, i.e., Saint-Venant’s principle, and some remarks are offered for
treatment of such effects. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the stress analysis of a circular cylinder fabricated from fiber composite materials, the applicable
structural theory depends on its radius/thickness ratio R/H. For a thin-walled cylinder, i.e., R/H > 1, either
classical or first order shear deformation shell theory is capable of accurately predicting its behavior. See
Noor et al. (1991) for a survey of such studies. For R/H small (say R/H < 10), three-dimensional (3D)
elasticity must be used. The literature on 3D elasticity analyses of cylinders is abundant, but most of it is
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devoted to isotropic and orthotropic cylinders: for examples, see Shaffer (1968), Chou and Achenbach
(1972), Noor and Rarig (1974), Srinivas (1974), Grigorenko et al. (1974), Chandrashekhara and Gopala-
krishnan (1982), Hyer et al. (1986), Ren (1987), Hyer (1988), Roy and Tsai (1988), Noor and Peters (1989),
Spencer et al. (1990), Varadan and Bhaskar (1991), and Ye and Soldatos (1994). For monotropic and an-
isotropic cylinders, 3D elasticity analysis is disproportionately more cumbersome than for the aforemen-
tioned cases. Examples of monotropic cylinder analyses include Sherrer (1967), Pagano (1972), Hyer and
Rousseau (1987), Lee and Springer (1990), Kollar (1994), Kollar and Springer (1992), Kollar and Patterson
(1993) and Kollar et al. (1992). Some fundamental results for a homogeneous circular cylinder with the most
general form of cylindrical anisotropy are also available; expressions for a stress state which does not vary
along the generating axis are summarized in Lekhnitskii (1981) text. Lekhnitskii used the Airy and Prandtl
stress functions, an approach that does not provide displacements without further integrations. Displace-
ment data were given by Sherrer (1967), Pagano (1972), Hyer and Rousseau (1987), Kollar (1994), Kollar
and Springer (1992), Kollar and Patterson (1993) and Kollar (1994) in their monotropic cylinder analyses.

This synopsis of the state-of-the-art reveals that a tractable method for the analysis of a multilayered
cylinder of materials with cylindrical anisotropy of the most general form (i.e., 21 distinct elastic constants
per material) remains to be developed. While construction of an analytical solution for this case is de-
ceivingly straight-forward (i.e., by linking single-layer anisotropic cylinder results according to full inter-
laminar traction and displacement continuity and prescribed lateral surface conditions), the algebra is
formidable. Kollar et al.’s consideration of the case of a multilayered monotropic cylinder under the
condition of the stresses remaining constant along the generating axis (Kollar, 1994; Kollar and Springer,
1992; Kollar and Patterson, 1993) exemplifies the extent of the details involved.

An analysis based on 3D elasticity of a general laminated circular cylinder under arbitrary axisymmetric
loading conditions is presented herein. The cylinder’s radial profile may consist of any number of perfectly
bonded layers, each having its own thickness and distinct cylindrically anisotropic mechanical properties,
where the anisotropy may be of the most general form, i.e., 21 independent elastic moduli or compliances.
The analysis is based on semi-analytical finite elements, and in the present version, the governing equations
are ordinary differential equations in terms of the axial coordinate. Two axisymmetric loading conditions
are considered, which induce uniform and linear variations of stress along the axis of the cylinder. Solutions
for loadings inducing higher variations of stress states can be inferred by induction from the method for
these two cases. The solution procedure calls for setting forth the general form of the displacement fields at
the outset, and analysis enables these fields to be completely defined. The problem statement and solution
for the uniform stress state fit the relaxed formulation of the Saint-Venant (1856a,b) problem, and that for
the linearly varying stress state is associated with the Almansi (1901a,b) Michell (1901) problem. Remarks
on the modification of these solution to account for point-wise specification of end conditions are offered in
the concluding remarks. Such end effects fall within the realm of the quantitative analysis of Saint-Venant’s
principle. In a companion paper, the present methodology will be applied to flexural loading conditions.

2. Basic equations

Consider a circular cylinder of length L with a radial profile consisting of any number of perfectly
bonded elastic layers, each with distinct cylindrical anisotropic mechanical properties and thickness. Let
this cylinder be restrained from translation and rotation at one end (the fixed end) and unsupported at the
other (the tip end). Adopt cylindrical coordinates (7, 6,z) and with the origin at the center of the tip end
cross-section as shown in Fig. 1a. Let ry denote the outer radius, and if the cylinder is hollow, let 7, denote
the radius of its inner lateral surface. The components of displacement vector, stress and strain are, re-
spectively, u = [u,v,w|, 6 = [0,, G4y, Oz, G4z, O, G,H]T, and € = e, €09> €25 Vozr Vros y,.H}T. The constitutive re-
lation for any layer in the laminated cylinder is
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Fig. 1. (a) Circular cylinder under uniform axial and torsion shears. (b) Circular cylinder under uniform and linear pressurizations.
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o = Ce, (1)

where C is a (6 x 6) matrix of cylindrically anisotropic elastic moduli with the anisotropy axis coinciding
with the z-axis (or 3-axis). For a solid cylinder, the properties as » — 0 must exhibit a transition from
anisotropy to transverse isotropy in order for a physically meaningful axisymmetric structure, i.e.,
C11 = Cp, C13 = Ca3, Cyy = Css. No such restrictions are necessary if the cylinder is hollow.

The semi-analytical finite element equations to be used herein appeared previously in Zhuang et al.
(1999). Hence, only its essence need to be summarized here, and many of their details may be omitted. In
this semi-analytical finite element version, the thickness profile of the cylinder undergoes discretization
radially into cylindrical laminas. Each lamina is a separate entity enjoying distinct mechanical properties
and thickness, so that a collection of such elements is suitable for representing any laminated, anisotropic
cylinder. Within each lamina, the radial dependence of the displacement field u is represented by quadratic
interpolations over three equally spaced nodal surfaces, i.e.,

097 1" 0 e
. . n(r . v(0,z a0 .
fv(@e) = - ae) || wes| o U002 =n0u2), 2)

where {u,v,w} are (3 x 1) arrays of the nodal displacement components whose axial and circumferential
dependencies are unspecified at the outset and n’s are the radial interpolations.

This form of the displacement field for a generic lamina requires that linear strain-displacement equa-
tions be split into differentiations with respect to r,0,z.

e=(L,+Ly+ L), (3)

where (L,, Ly, L) are 6 x 3 differential operator matrices. Inserting displacement field (2) into Eq. (3) leads
to the following strain-transformation equations.

€ = b,u+ bgu,y+b.u,, . 4)

Both strain-displacement operators L,;’s and strain-transformation matrices b;’s are given in Zhuang et al.
(1999).

Varying the total strain energy, from computing the elemental strains by Eq. (4) and summing them,
leads to the following set of discrete partial differential equations

KIU + KZUaG +K3U7z _K4U709 _K5U7(?z _K6U7zz = F(O,Z), (5)

where U(0,z) is the assembled (3N x 1) array of all nodal displacement components at the N nodes of the
finite element model, K;’s are system stiffness matrices, "and F(0,z) is the consistent load vector. The set of
equilibrium equations (5) is valid for both axisymmetric and nonsymmetric loading conditions.

3. Equations for axisymmetric deformations

Axisymmetric deformations are independent of 0 and Eq. (5) reduces to
KU(z) + K5U,, (z) — KgU,.. (z) = F(z), (6)

where F(z) represents pressure loads on the cylinder’s inner and outer lateral surfaces.

! These matrices may be found in Zhuang et al. (1999). It is noted that K;, K4, K5 and K¢ are symmetric, while K, and K3 are
antisymmetric.
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The strategy for solving Eq. (6) relies on representing F as a power series in z.
F(Z):F()-i-ZFl—‘y-"'—f—Z](Fk7 (7)

where F, embodies uniform internal and external pressures, zF; defines the linear varying pressures, and
subsequent terms represent higher order polynomial pressure gradients. Consequently, the displacement
field can be taken as

U(z) = Uo(2) + Ui(2) + -+ - + Ui(2), (8)

where each term Uj;(z) is associated with the corresponding load term z’F; in Eq. (7). Displacement field
Uy (z) embodies strain and stress fields that are uniform in the axial direction. This state represents a cyl-
inder under uniform internal and external pressure with the possibility of equal and opposite axial forces
and torques acting on the two ends. The next term U, (z) gives strain and stress fields that are at most linear
in z and appropriate for (1) linearly varying normal pressures and (2) uniform axial and circumferential
surface shear tractions. Successively higher displacement terms define higher axial variations of the strain
and stress fields for correspondingly higher polynomial variations of the loading conditions.

As the relaxed formulation of the problem is considered herein, end conditions in terms of axial force P,
and torque M, are used. These resultants are given by integrals of end tractions ¢.. and a,. over the cross-
section.

() 1o
P = 27:/ o..rdr; M, = 2n/ oy, 12 dr. 9)

A solution using a point-wise prescription of the end conditions differs with that based on integral condi-
tions (9) only in the region near the ends according to Saint-Venant’s principle. Means to modify the so-
lutions herein to account for such end effects are addressed in the concluding remarks.

Only the first two terms, i.e., Uy(z) and U (z), for uniform and linearly varying strain and stress fields are
considered herein and they are denoted as Problems I and II. From their discussion, the treatment of higher
terms will become apparent.

4. Rigid body displacements

The rigid body motions of translation w, and rotation w; about the z-axis when substituted into the
homogeneous form of Eq. (6) must satisfy it identically. Also, its substitution into strain-transformation
Eq. (6) yields zero strain. These relations provide identities that are used in the solution procedure and are
set forth here. Let Ugg be the vector of rigid body translation wy and rotation w; about the z-axis.

Ugrg = woR3 + m3Ry, (10)
where
URB = [U, Vv W}T; R3 = [OaOaI]T; R4 = [07R70]T (11)

with column vectors I and R containing unit entries and the r-coordinate of the nodes, respectively.
Substituting Eq. (10) into Egs. (6) and (4) and equating the bracketed quantities of wy and w; to zero give

K1R3 = 07 K1R4 =0 and brr3 = 07 brr4 = 07 (12)

where r3 and ry are element level vectors that correspond to Rz and Ry.
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5. Problem I — uniform stress state

The displacement and load vectors, Uy(z) and Fy, satisfy the equation
KU + K3U). — K¢Uy.. = Fy, (13)
where F,, contains the internal and external pressures p,; and p,o as shown in Fig. 1b. In addition to these
pressurizations, there may be equal and opposite axial forces P, and torques M, on the two end cross-
sections. For this loading condition, the strain and stress states are uniform in the z-direction, and the most
general form of the displacement field is given by
uo = ap¥Wus(r) + aw¥Ve(r) + up(r),

vo = arerz + apPus(r) + aePre(r) + vip(r) + wsr,

wo = apz + ap s (r) + ae Ve (r) + wip () + wo, (14a)
or in matrix notation in terms of the nodal variables of the finite element model as
Uy = ap[zRs + ¥i3] + a[zRs + ¥i6] + Uy + 03R4 + woR3, (14b)
where
U Ulp l:blui
Up=<¢ Vo ¢, Up=1 Vi ¢ Vi=1q ¥ (15)
W() Wlp l/’]wi

and Ry and R, were given in Eq. (11). The coefficients 2 4,3 and a4 are amplitudes whose values depend on
axial force P, and torque M,. The polynomial terms z and rz of the w and v displacement components are
termed the primal field. They represent plane longitudinal deformation and pure twisting of the circular
cylinder, the familiar kinematic hypotheses of elementary theory. The terms ¥;; and ¥ are the cross-
sectional deformations due to Poisson’s ratio effects and extension-torsional coupling when the cylinder is
composed of laminated anisotropic materials. All of these deformations are collectively called the warpages.
The term Uy, is the particular solution of Eq. (13) for the applied pressures. Displacement field (14a) and
(14b) can be established by integrating the strain-displacement equations for a longitudinally uniform strain
state. It can also be obtained by integrating rigid body displacement (10) once with respect to z and
adopting the kinematic coefficients a;; and ay6 for the integrated field. This latter method of generating Uy is
due to Iesan (1986, 1987). The remaining terms involving wy and w; are the rigid body motions.
Substituting displacement field (14b) into governing Eq. (13) yields

ZCZ]3{K1R3} + za16{K1R4} + {K1U1p — Fo} + a13{K1 T13 + K3R3} + 6116{K1 T16 + K3R4} =0. (16)

For Eq. (16) to be satisfied, each term enclosed by braces must vanish by itself. The two terms involving z
are satisfied because of rigid body displacement identities (12). Setting the remaining terms equal to zero
gives

K] T]3 = —K3R3, K] T[G = —l(ij47 K] U]p = F(). (17)

The solutions to Eq. (17) define the displacement field completely except for amplitudes a;; and ay. It is
noted that K is singular, and two degrees of freedom, an axial translation and a rotation about the z-axis,
must be restrained before its inversion is possible. This suppression may take the form of deleting an axial
and a circumferential degree of freedom or by condensing these two rigid body motions from K;. Removing

2 Subscripts 3 and 6 are used for the force and moment in the z-direction. Subscripts 1, 2, 4, 5 are reserved for forces and moments
about two orthogonal axes in the plane of the cross-section.
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any two of these degrees of freedom does not alter the relative displacements due to deformation, as a rigid
body displacement can always be appended to the deformed geometry to meet the boundary conditions on
the fixed end of the cylinder. For the case of a solid cylinder, the displacements on the z-axis must vanish,
ie., u(0,z) = v(0,z) = 0.
Knowing all the components of Uy, the strains and stresses are found by means of Egs. (4) and (1).
€ =ap€n + a€ + €, 6= a6+ 6056+ 6, (18)
where
€3 =b.¥;3 + b.r3, €6 = b5 +b.ry, €, =b,uy,
o3 = Cep3, o5 = Ceg, Op = C€1p

(19)

Coefficients a;3 and a6 are determined by equating the integrals of the stresses over the cross-section for
P. and M, to the applied axial force and torque, Py and M. Substituting .. and gy, from third and fourth
lines of Eq. (18) into Eq. (9) gives

K33 Kise | ) an Py &0
" _ , 20
[Km K166:| { ass } {Mn } {Mo } (20)

where «; (i, = 3,6) are cross-sectional stiffness coefficients given by

M r M r
Kp3 = 21 Z / o731 dr, Kigs = 2T Z / O160:1” dr,
m=1 " m=1 "
M 7 M ro
Kr3g = 21 Z / 071622V dr =2x Z / 0'13921’2 dr
m=1 7" m=1 Y7

and P;; and M, are resultants of o/p.. and oy, of the particular solution, i.e.,

M ) M )
Py =2r Z / Ot dr, M, =2n Z / 01p0zr2 dr. (22)
r m=1 Y7

m=1 i

The summations in Egs. (21) and (22) occur over M elements of the finite element model, In Eq. (20), x;33
and ;66 represent cross-sectional extensional and torsional rigidities of the cylinder, and x4 is the ex-
tensional/torsional coupling coefficient. For all homogeneous and laminated isotropic, orthotropic and
monotropic cylinders, k3 is absent. Generic cross-sections with such material systems are structural
symmetry planes, so that extensional/torsional coupling cannot exist. Moreover, no out-of-plane warpage
due to an applied torque can occur, i.e., ¥;s = 0. For any cylinder with an absence of material symmetry
about its cross-section, kj¢’s and cross-sectional warpage ¥s’s will occur. Examples of such cylinders
include homogeneous, anisotropic and laminated anisotropic cylinders including laminated angle-ply cyl-
inders. Inverting r; in Eq. (20) gives coefficients a;;3 and a;¢ as

-1
apy | _ | K3 Kise Py — Pn (23)
are Kie3  Kies My—My |-

6. Problem II — linearly varying stress state

For Problem II, displacement vector U; provides for a strain field that is at most linear in z. Hence, the
stress field follows accordingly, and this state can accommodate linearly varying pressures and uniformly
applied longitudinal and circumferential shear tractions. The governing equation on Uj is
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K Ui + KU — KU .. = zF; + Fo, (24)

where F; contains the pressure gradients p/; and p/, on the inner and outer surfaces, i.e., p,i(z) = zp/, and
pro(z) = zpl,, and F, contains the uniform longitudinal and circumferential shear tractions on the inner and
outer surfaces, p.i, p.o and pg;, peo; see Fig. 1b. Line integrals of these tractions over the inner and outer
circumferences of radii ) and r; give force and torque resultants per unit length as

Py = 2n(rop-o — rip-), M.y = 2n(r3peo — 17pwi)- (25)

The sign convention for these tractions follows that for stress as shown in Fig. la. The response to uni-
formly applied longitudinal and circumferential surface shear tractions, is embodied in the warpage
components of U; as will be shown. Let the tip end z = 0 be traction-free, so the initial values of P, and M,
are zero. Also, assume the absence of uniform pressures as they were treated in Problem 1.

The form of U is

ui(r,z) = a3 (z2¥iu(r) + Yisu(r)) + ans(z2¥16u(r) + Yusu(r)) + bz W isu(r) + bie Wieu(r) + zuayp: (7)
+ 2 ()

v (r,z) = %ﬂlud’z2 + a3 (z2¥ 30 (r) + Yuze(r)) + aus(z2¥160(r) + Yieo(r)) + buerz + bz ¥isu(r)
+ bu6 V160 (r) + z0up1 () + vipa () + w37 (26a)

wi(r,z) = Lamz> + a3 (¥ (r) + Wiz (1)) + ans (2160 () + Puew(r)) + busz + by ¥, (r)
+ b6 W i6w(r) + 2wipt () + wipa () + wo

or in matrix notation as

72 z2
U = a3 (ERZ‘ +z¥;5 + ‘1’113) + ane (ER4 +z¥56 + '1’116) +bi3(zR3 + ¥13)

+ bis(zRs + W16) + zUpp1 + Uppa + 3R + woR3 (26b)
with
Ui Uiy Vini
U[lpl = Vllpl 5 U11p2 = V11p2 3 lIUIIi = '/’11“' ) (27)
Wi pl W11p2 'pum

where ¥;’s are Problem I warpages, Uy, and Uy, are new particular solutions for the pressure gradi-
ents, and ¥;;’s are new warpage functions. Displacement field (26b) is obtained by integrating the dis-
placement field (14b) of Problem I once with respect to z and introducing new kinematic coefficients
(a3, ane) and (by3, byg). As noted earlier, this method for generating the displacement field is due to Iesan
(1986,1987).

To determine the new kinematic data, substitute displacement field (26b) into equilibrium equation (24).

Zap{KiRs} + Zae{KiRy} + za {Ki ¥rs + KsRs} + zaye{Ki Vs + KsRy} + 203 {KiR3}
+ zbye {KiRy} + Z{KIUUpl - Fl} +ap{Ki Vs + K3¥3 — KeRs} + ape{Ki ¥y + K3 W6 — KeRy}
+ b3 {Ki1 W13 + KsRs} + be{K1 Prs + KsRs} + {KUppo + KUy — Fo} =0 (28)

Each term in Eq. (28) enclosed by braces must vanish. Many of the terms reiterate rigid body identities (13)
and Eq. (17) for the warpages of Problem I. The equations providing new data are
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Ki¥i3 = —K3¥13 + KR, KiUjp = Fy,
Ki¥us = —K3¥6 + KeRy, KiUp: = Fo — KsUppr.

Solving Eq. (29) gives the warpages ¥;3 and ¥, and particular solutions Uy, and Uy, .

It was noted that an axial and a hoop degree of freedom must be restrained in K; to suppress its singular
nature. In Problem I, the restrained degree of freedom identifies the surface where the shear tractions are
applied. The solution of Eq. (29) for warpages Y3 and Y6 gives a stress field that acts as applied loads,
while the restrained degree of freedom plays the role of a support or reaction. This reversal of roles is
permissible since a rigid body displacement can be appended to satisfy any prescribed kinematic conditions
at the fixed end of the cylinder. Only one pair of traction components on a lateral surface can be ac-
commodated with each set of warpages. For two loaded surfaces, superposition must be used.

The strain and stress distributions from Egs. (26a), (26b), (4) and (1) are

€ = ay3(z€;3 + €3) + ane(z€6 + €16) + z€xp1 + €12,

(30)
6 = ay3(zo3 + 6113) + aye (2616 + 6116) + 267p1 + G2,
where (e;3, €6, 673, 616) were given by Eq. (19) and
€3 =b.¥;3+b.¥p, o3 = Ceyps,
€116 = brlpllé + bz'/’m o6 = Ceye, (31)
€p1 = brullply Opl = CGle,
€np2 = buyp + by, op2 = Ceppa,

Integrating o_.(z) and 0,9(z) over the cross-section according to Eq. (9) gives the axial force P,(z) and torque
M,(z) at any arbitrary station along the z-axis as

P(z) | _ K33 Kres | | am Pn K3 Kies | ) ams K33 Kies | | bus
=z + +
M.(z) Kies  Kres | | dus M Kies  Kues | | Qe Kigs  Kres | | Due

Py,
32
+ {M } (32)

where coefficients x;;’s are those of Problem I. Coefficients «;;’s and resultants Pys, My, Pyi, My arise
from integrating the o, and oy, components of 63, 6y, 61,2 and 6, according to formulas analogous to
Egs. (21) and (22).
Global equilibrium mandates vanishing of the sums of the derivatives of P.(z) and M.(z) and the re-
sultants P,; and M, of the applied surface tractions,
OP. oM.,

+P; =0 and
Oz z

+M,; =0 (33)

with P,; and M;; given by Eq. (25). Differentiating Eq. (32) with respect to z and invoking Eq. (33) yield the
following equation for a;3 and ays.

_1
a3 | _ | K3 Kise Py + Pn (34)
aire Kre3  Kies My + M

Then, b;3 and by can be determined from Eq. (32) by invoking initial conditions P, = M, = 0 atz= 0.

1
bis | | K33 Kies K3z Kpes | | ams P
_ + . (35)
bus K63 Kres Kies  Kies | | @urs M
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Consider a two-layer +£30° angle-ply laminate of equal thickness plies of a fiber composite material
whose mechanical properties are

B gy i
Er Er

T _ 0.4,

Grr
E;

0.3,

Vi = 03,

Vir = 0.2.

These properties in terms of coefficients C;;’s at £30° orientations with the coordinate axes are

[ 2.28538  0.32217  3.85796
0.32217 1.10301 0.29896
3.85796  0.29896 11.7913

£2.05471 0.02010 £6.17768

0.37500

£0.04330

+2.05471
F0.02010
+6.17768
+0.04330
3.97060
0.32500
1 4300

(36)

(37)

To illustrate the differences in the behaviors between a thick-walled cylinder and a shell, two radius/
thickness ratios are considered, R/H =1 and 10, where H is the total laminate thickness and R is the mean
radius of the cylinder. The cross-sectional stiffness matrices, x;’s, for these two cylinders are

212.053 292.818H
sym 98058.4H* ’

R/H=10

26.187 27957TH
sym 114.28H? ’

R/H=1

Ky = ErH? ki = ErH? (38)

where these values are valid only for their given R/H ratios.

8. Problems I loads

For loading conditions of axial force Py, torque M, and external pressure py, the coefficients, a;3 and ays,
for unit values of these loads are listed in Table 1. Normalized displacement and stress distributions are
shown in Figs. 2-6, where the normalization factors, # and &, for three loading conditions are listed in
Table 2. The only non-zero warpage component for axial force and torque is the radial component as
shown in Fig. 1. The primal field components, wy = a3z and vy = a7z, are not shown. The normalized
stress components o;; /& for axial force and torque are shown in Figs. 3 and 4. Note interlaminar kinks (or
jumps) in o., under axial force Py and in ¢y, under torque M, even though Cs; and Cy4 are the same for both
layers in this angle-ply layup. This behavior is attributable to anisotropy, as C3s and Cy are different in the
two layers. The jumps are small for the shell, R/H =10, vis-a-vis those in the thick-walled cylinder,

Table 1
Summary of a;3 and a6 coefficients for Py =1, My =1, py = 1
R/H =1 R/H =10
ar A aps ae
Axial force 0.05169 —0.01264 47.353 x 1074 —0.1414 x 10~
Torque —0.01264 0.01184 —0.1414 x 104 0.1024 x 10~
Uniform pressure 0.8126 —0.1393 6.2889 —0.01624
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Fig. 2. Normalized radial displacement for axial force P, and Torque M.
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R/H=1. As R/H — large, i.e., retreating into the thin shell regime, these jumps, while always present
because of coupling from anisotropy, will be even less noticeable and give an appearance of a quasi linear
stress distribution. Plots of the radial displacement and stresses for unit external pressure are shown in Figs.
5 and 6. Again, the primal displacement field, wy = a;3z and vy = a3z, that is coupled with pressurization is
not shown. Due extension-shear coupling, shear stress gy, accompanies the normal stress components for

external pressurization, and there are jumps of oy, 0.. and gy, at the interlaminar surface.
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Normalized Radial Coordinate z/H

Normalized Radial Coordinate z/H
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Table 2

Normalization factor for various loads
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Axial force Torque Uniform ext. pressure
W=P/ErH 7= My/E - H> %= poH /Er
o= P/H’ & — My T m
Linear pressure Uniform cir. shear Uniform long. shear
w = poH*/Er W = pwH /Er W = poH /Er
o1 = poH T1 = P T1 = Puo
= pol [Er iy = poo/Er i = po/Er
G =po @ = pp/H @ = po/H
Table 3
Summary of ay; and ay coefficients for ply =1, ppo =1, po =1
R/H =1 R/H =10
ans ane ans ane
Linear pressure 0.8126 —0.1393 6.2889 —0.01624
Uniform cir. shear 0.1788 —0.1674 97.95 x 10~ —70.94 x 10~*
Uniform long. shear —0.4871 0.1192 —0.3124 9.3289 x 10
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Fig. 7. Normalized radial displacement for linearly varying external pressure p/.

For loading conditions of linearly varying external pressure of rate p/,, uniform external circumferential
shear py, and uniform external longitudinal shear p,, all x;’s are zero; therefore, b3 = bpg = 0. The
values of a3 and aj6 for unit values of these loads are listed in Table 3.
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Normalized displacement and stress plots are shown in Figs. 7-12 for the three loading conditions. The
two sets of normalization factors, one for displacement and stress gradients, #; and &, and the other for
displacements and stresses uniform in the axial direction, %, and @, are listed Table 2. In Figs. 7, 9, and
11 are plots of the normalized displacements uniform in the axial direction for the three loading condi-

tions, i.e.,

Uy = am¥is + ans¥is + Uppo.
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Fig. 8. Normalized stress for linearly varying external pressure pl,.

(39)
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Fig. 9. Normalized displacements for uniform external circumferential shear py.

In all cases, the radial component is identically zero. Note that the circumferential and longitudinal dis-
placements on the outer surface are zero in all cases, as explained by their reversal of roles. The total
displacement on the outer surface will not be zero because a rigid body displacement will be appended to

satisfy end conditions at z = L. The normalized stress gradients are presented in Figs. 8, 10, 12. Since unit
loads were used and the stress gradients are linear combinations of ¢;;3 and oy, i.e.,

o) = 2[01130'13 + a6016 + O-Ilpl}

(40)
all graphs show the same distributions, except for the sign, as those for axial force, torque and uniform
external pressure of Problem I. The sign difference of the two sets of plots is due to the fact that the uniform
outer surface tractions produce a compressive axial force and negative torque, whereas the plots for

Problem I are for a tensile axial force and positive torque. Plots of the normalized uniform stress com-
ponents, i.e.,

oy = au36ys + 606 + Orp

(41)

are shown in Figs. 8, 10, and 12. For a shell, R/H = 10, the circumferential and longitudinal shear stresses
appear to vary linearly over the laminate thickness profile, while that for the thick-walled cylinder,
R/H =1, they are curvilinear.
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10. Concluding remarks

6179

A solution procedure for axisymmetric stresses and deformations in a laminated circular cylinder of
materials with the most general form of cylindrical anisotropy was presented. The governing equation is
based on a semi-analytical finite element formulation with the axial dependence z left in analytic form. The
solution methodology calls for the decomposition of the loading into power series of z with each load term
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Fig. 11. Normalized displacements for uniform external longitudinal shear p,.

comprising a problem. The total response is sought in ascending order of this load series with the first two
terms relating to uniform pressurization and linear pressurization with uniform circumferential and lon-
gitudinal surface shears. From solution details for these terms, the methodology for subsequent terms
should be straight-forward. The behaviors of a thin and thick two-layer +30° angle-ply cylinder were
presented to contrast some unusual phenomena in them.

The present solutions are based on a relaxed formulation where integral end conditions are used rather
than a point-wise specification. A solution based on a point-wise specification of the end conditions will
only show differences in the vicinity of the ends according to Saint-Venant’s principle. The difference is
merely a self-equilibrated state which attenuates with distance into the interior of the cylinder. This self-
equilibrated state can be represented by an eigenvector expansion with eigendata extracted from the fol-

lowing quadratic eigenproblem:
KU — yK;U — ’KqU = 0, (42)

where 7 is the inverse decay length parameter. Eigenproblem (42) is obtained by substituting the dis-
placement field U(z) = Ue " into the homogeneous form of Eq. (6). The underpinnings for the derivation
of Eq. (42) are the strain energy decay inequality theorems of Toupin (1965) and Knowles (1966). It is
mentioned that the dynamic counterpart of Eq. (42) relates to steady-state edge vibrations, which have been
discussed by Huang and Dong (1984) and Zhuang et al. (1999). Elastostatic end solution data from their
formulations may be extracted by setting the steady-state frequency w = 0. No examples of self-equili-
brated end effects were given herein; but Kazic and Dong (1990) and Lin et al. (2001) have illustrated
analyses of end effects for restrained torsion and other end loads in beams with arbitrarily-shaped cross-

sections.



C.H. Huang, S.B. Dong | International Journal of Solids and Structures 38 (2001) 6163-6182 6181

1.50

1.50
I
S~
N
2 :
© 1.25 o 1.25 o
£ o
T ;
(o] s
8 O
] i R
5 100 X 1004 <
© 5
o \ ]
O \ 0“'.' 0
N I o
g 0.75 4 :.\ E L 0.75 4 s
o) 22\ ) y
p4 '\. ;
N 4
0.50 T T T T 0.50 T T T L]
4.0 -2.0 0.0 2.0 4.0 6.0 -1.0 -0.5 0.0 0.5 1.0
Normalized Stress Gradient °ij /61 Normalized Stress Uij Il
10.50 10.50
% ] Gy ..'
@ 1025 1 - 10.25 % § -
© | ;
£ i
o : :
o ! %r
o} ;
o :
— 10.00 + T - 10.00 + H -
5] ! ..
3 1 Vo
o | *
3 -
N ] = i i [
= 9.75 ! aez 9.75 y
E ] :
(¢} i S
z :
1
i 9
9.50 T T 9.50 T T T T
2.0 -1.0 0.0 1.0 20 15 10 -05 00 0.5 1.0 1.5
Normalized Stress Gradient Oj 154 Normalized Stress Uii 1G5

Fig. 12. Normalized stress for uniform external longitudinal shear p..

References

Almansi, E., 1901a. Sopra la deformazione dei cilinri solecitati lateralmente. Atti Real Accad. naz. Lincei Rend, CL. sci fis., mat e natur.
Ser. 5 10 (I), 333-338.

Almansi, E., 1901b. Sopra la deformazione dei cilinri solecitati lateralmente. Atti Real Accad. naz. Lincei Rend, CL. sci fis., mat e natur.
Ser. 5 10 (1), 400-408.

Chandrashekhara, K., Gopalakrishnan, P., 1982. Elasticity solution for a multilayered transversely isotropic circular cylindrical shell.
J. Appl. Mech. ASME 49 (1), 108-114.

Chou, F.H., Achenbach, J.D., 1972. Three dimensional vibration of orthotropic cylinders. J. Engng. Mech. Div. ASCE 98 (EM4), 813—
822.



6182 C.H. Huang, S.B. Dong | International Journal of Solids and Structures 38 (2001) 61636182

Grigorenko, Ya.M., Vasilenko, A.T., Pankratova, N.D., 1974. Computation of the stressed state of thick-walled inhomogeneous,
anisotropic shells. Prikladnaya Mekhanika 10, 86-93.

Huang, K.H., Dong, S.B., 1984. Propagating waves and standing vibrations in a composite cylinder. J. Sound Vib. 96 (3), 363-379.

Hyer, M.W., 1988. Hydrostatic response of thick laminated composite cylinders. J. Reinfor. Plastics Compos. 7, 321-340.

Hyer, M.W., Cooper, D.E., Cohen, D., 1986. Stresses and deformations in cross-ply composite tubes subjected to uniform temperature
change. J. Thermal Stresses 9, 97-117.

Hyer, M.W., Rousseau, C.Q., 1987. Thermally induced stresses and deformations in angle-ply composite tubes. J. Comp. Mat. 21 (5),
454-480.

Iesan, D., 1986. On Saint-Venant’s problem. Arch. Ration. Mech. Anal. 91, 363-373.

Iesan, D., 1987. Saint-Venant’s problem. Lectures Notes in Mathematics, Springer, Heidelberg.

Kazic, M., Dong, S.B., 1990. Analysis of restrained torsion. J. Engng. Mech. Div. 116 (4), 870-891.

Knowles, J.K., 1966. On Saint-Venant’s principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21,
1-22.

Kollar, L.P., Springer, G.S., 1992. Stress analysis of anisotropic laminated cylinders and cylindrical segments. Int. J. Solids Struct. 29
(12), 1499-1517.

Kollar, L.P., Patterson, J.M., Springer, G.S., 1992. Composite cylinders subjected to hygrothermal and mechanical loads. Int. J. Solids
Struct. 29 (12), 1519-1534.

Kollar, L.P., Patterson, J.M., 1993. Composite cylindrical segments subjected to hygrothermal and mechanical loads. Int. J. Solids
Struct. 30 (18), 2525-2545.

Kollar, L.P., 1994. Three-dimensional analysis of composite cylinders under axially varying hygrothermal and mechanical loads.
Comput. Struct. 50 (4), 525-540.

Lee, S.Y., Springer, G.S., 1990. Filament winding cylinders: 1. Process model. J. Comp. Mat. 24, 1270-1298.

Lekhnitskii, S.G., 1981. Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow (translated from the revised 1977
Russian edition).

Lin, H.C., Dong, S.B. Dong, Kosmatka, J.B., 2001. On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder. J. Appl.
Mech., in press.

Michell, J.H., 1901. The theory of uniformly loaded beams. Quart. J. Math. 32, 28-42.

Noor, A.K., Rarig, P.L., 1974. Three dimensional solutions of laminated cylinders. Comput. Meth. Appl. Mech. Engng. 3, 319-334.

Noor, A.K., Peters, J.M., 1989. Stress, vibration and buckling of multilayered cylinders. J. Struct. Engng. 115 (1), 69-88.

Noor, A K., Burton, W.S., Peters, J.M., 1991. Assessment of computational models for multilayered composite cylinders. Int. J. Solids
Struct. 27 (10), 1269-1286.

Pagano, N.J., 1972. The stress field in a cylindrically anisotropic body under two-dimensional surface tractions. J. Appl. Mech. 39 (3),
791-796.

Ren, J.G., 1987. Exact solutions for laminated cylindrical shells in cylindrical bending. Comp. Sci. Tech. 29, 169-187.

Roy, A.K., Tsai, S.W., 1988. Design of thick composite cylinders. J. Pressure Vessel Tech. 110 (3), 255-262.

de Saint-Venant, A.J.C.B., 1856a. Memoire sur la torsion des prismes. Memoires des Savants etrangers 14, 233-560.

de Saint-Venant, A.J.C.B., 1856b. Memoire sur la flexion des prismes. J. de Mathematiques de Liouville Ser. II 1, 89-189.

Shaffer, B.W., 1968. Pressurization of two-layered incompressible orthotropic tubes. J. Frank. Inst. 285, 187-203.

Sherrer, R.E., 1967. Filament-wound cylinders with axial-symmetric loads. J. Comp. Mat. 1, 344-355.

Spencer, A.J.M., Watson, P., Rogers, T.G., 1990. Stress analysis of anisotropic laminated circular cylindrical shells. In: Hui, D., Sun,
C.T. (Eds.), Recent Developments in Composite Materials Structures, Aerospace Div., ASME, vol. 19, pp. 57-60.

Srinivas, S., 1974. Analysis of laminated composite circular cylindrical shells with general boundary conditions, NASA TR-R-412.

Toupin, R.A., 1965. Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83-96.

Varadan, T.K., Bhaskar, K., 1991. Bending of laminated ortho-tropic cylindrical shells-an elastic approach. Compos. Struct. 17 (2),
141-156.

Ye, J., Soldatos, K.P., 1994. Three-dimensional stress analysis of orthotropic and cross-ply laminated hollow cylinders and cylindrical
panels. Comp. Meth. Appl. Mech. Engng. 117, 331-351.

Zhuang, W., Shah, A.H., Dong, S.B., 1999. Elastodynamic Green’s function for laminated anisotropic circular cylinders. J. Appl.
Mech. 66 (3), 665-674.



